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Abstract. We have used the variational approach to calculate the in-plane electronic thermal
conductivity of high-Tc superconductors along the lines of a two-fluid model. To account for
the layered structure of these compounds, an anisotropic electronic energy spectrum with a
Josephson-like coupling between the superconducting planes within a Lawrence–Doniach model
has been assumed. Both elastic and inelastic electronic scattering processes are considered.
The theoretical results obtained are inquantitative agreementwith experimental data on
Bi2Sr2CaCu2O8 single crystals and Bi2Sr2Ca2Cu3O10 polycrystals. These results suggest an
electronic origin of the peak observed in the thermal conductivity of these materials.

1. Introduction

The thermal conductivityκ still remains a controversial transport property of high-critical-
temperature superconductors (HTSs). Some authors attribute the main structure of this
transport coefficient, the rapid increase ofκ below Tc and the peak at lower temperature,
to the lattice contributionκp of the thermal conductivity [1–3]. The rapid rise ofκ in the
superconducting state is then attributed to the increase of phonon mean free path as electrons
condense into Cooper pairs which do not scatter phonons. Yuet al [4] have however
proposed an alternative interpretation based on a two-fluid model for superconductivity:
as the scattering rate of normal electrons has been observed to decrease rapidly in the
superconducting state of YBa2Cu3O7−δ [5] and Bi2Sr2CaCu2O8 [6], the rapid increase ofκ
belowTc could be mainly due to an electronic contribution. A phenomenological description
of this contribution has been suggested [7] and has been applied to describe the behaviour
of κ in YBa2Cu2O7−δ ceramics, pure or doped with Fe, and presenting or not an excess of
CuO [8].

In the present paper, the electronic contribution to the thermal conductivity of HTSs is
calculated using the variational method introduced by Kohler and described by Ziman [9].
This approach is quite powerful as it allows one to take into account the dimensionality and
the anisotropy of compounds such as HTSs in a straightforward way. In this approach, the
transport coefficients are tensors expressed in terms of trial currents and scattering matrix
elements. We have calculated the in-plane thermal conductivityκe,ab of HTSs, taking
into account the layered structure of these materials using an anisotropic electronic energy
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spectrum, with a Josephson-like coupling between the superconducting planes (as in the
Lawrence–Doniach model [10]). We have considered elastic and inelastic scattering of
electrons by acoustic phonons as well as elastic scattering of electrons by impurities. We
have not taken into account the scattering of electrons by grain boundaries, dislocations and
sheetlike faults in order to limit the number of free parameters in the final expression forκ.
We have also neglected the scattering of electrons by high-frequency optical phonons since
they are not excited in the temperature region of interest, i.e. below 200 K.

In section 2, we present the general tensorial variational expression for the electronic
thermal conductivity of an anisotropic system. The scattering processes of electrons are
discussed in section 3. In section 4, we present and discuss the theoretical results. The model
is tested on the experimental data of Allenet al [11] on a single crystal of Bi2Sr2CaCu2O8

and on the data of Clootset al [12] on a polycrystalline sample of Bi2Sr2Ca2Cu3O10.
Conclusions are finally drawn in section 5.

2. A variational expression for the in-plane electronic thermal conductivity

Layered high-Tc compounds such as the bismuth and thallium families have a tetragonal
lattice for which transport coefficients are diagonal tensors. The tensorial expression for
the electronic thermal conductivity of such systems is given in the variational scheme by
[9, 13]
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with −e the electron charge,νµ(k) the µ component of the electron velocity with wave
vector k, E(k) =

√
(ε(k) − εF )2 + 12(k) the quasiparticle energy spectrum withεF the

Fermi energy and1 the superconducting gap parameter,f 0 the Fermi–Dirac distribution
function andQ
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where C(k, k′) is the scattering probability corresponding to the different electronic
scattering processes andφ

µ

i (k) the trial functions.
We have considered a BCS s-wave pairing with a temperature dependence of the gap

approximately by [4, 14]

1(T ) = 1(0) tanh
(
α

√(
Tc − T

)/
T

)
(4)

where the constantα ≈ 2.
In order to take into account the layered structure of HTSs, we have considered an

anisotropic electronic energy spectrum with a Josephson coupling energyJc between the
superconducting (CuO2) planes [10]
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wherem∗
ab is the effective mass of electron in theab plane andd the distance between the

superconducting planes. The coupling energyJc is given by [10]

Jc =
√

4εF h̄2/m∗
cd

2 (6)

with m∗
c the effective mass of electrons along thec axis.

We have then performed calculations of the in-plane electronic thermal conductivity
κe,ab, i.e. supposing that the temperature gradient lies along theab planes as is most usually
the case. To this end, we have used the set of trial functionsφ

µ

i (k) = E(k)i−1kµ limited
to i = 1, 2 [9, 15]. As a result, the in-plane trial currents defined in (2) read, in the
long-wavelength limit(kzd � 1, so that cos(kzd) ≈ 1),
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whereJ ab
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ab/dh̄3 andUab
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0 /(−e), and
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with x = E/kBT , jc = Jc/kBT , andb(T ) = √
12 + J 2

c /kBT .

3. Electronic scattering mechanisms

The scattering processes restore the equilibrium state of a system which has been submitted
to an external perturbation such as an electric field or a temperature gradient. We consider
here the elastic scattering of electrons by impurities and the inelastic scattering of electrons
by acoustical phonons.

3.1. Electron–impurity scattering

HTSs are non-stoichiometric systems which contain point defects mainly corresponding to
oxygen atom vacancies. In order to take into account the scattering of electrons by these
‘impurities’, we have used the Yukawa potential [9]

V (r) = (
Ze2/εc

)
e−02Dr/r (9)

whereZe is the effective charge of the impurity,εc the effective dielectric constant and
02D the two dimensional Thomas–Fermi factor which takes into account the screening of
the electronic density near the impurity [16]

02D = 2m∗
abe

2/4πh̄2ε0 (10)

whereε0 is the electric permittivity in vacuum.
In the Born approximation, the (elastic) electron–impurity scattering probability

corresponding to the Yukawa potential (9) is given by
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whereV is the volume of the crystal,N the impurity fraction in the sample, andk and
k′ the wave vectors of the incoming and outgoing electron respectively. Inserting (11) in
(3) and integrating in cylindrical coordinates, we obtain the following expressions for the
in-plane scattering matrix elements for electron–impurity collisions in the long-wavelength
limit:

P
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is a material constant, and
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3.2. Electron–acoustic phonon scattering

The scattering of electrons with acoustic phonons is described using the deformation
potential approximation [9, 13]

V (q) = −i
√

h̄/2MωqλabεF q (15)

whereq is the phonon wave vector,λab the in-plane electron–phonon coupling constant,ωq

the phonon frequency,M the mass of the crystal, andεF the Fermi energy. Note that this
approximation is valid in the case of long-wavelength acoustic phonons which are supposed
to limit predominantly heat transport in high-Tc cuprates [1, 3]. We have assumed a linear
in-plane acoustic phonon spectrum ¯hωq = h̄sq, with s the sound velocity in the crystal.

In the Born approximation, the scattering probability corresponding to the potential (15)
reads
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whereV is the volume of the crystal andNq the Bose–Einstein distribution function. We
suppose here that the phonon system is in equilibrium, i.e. we neglect the phonon drag
contribution.

Inserting expression (16) into (3) and integrating in cylindrical coordinates, we obtain
the in-plane electron–acoustic phonon scattering matrix elements

P
el−ac.ph

11,ab = P
ac.ph

0,ab

(
kBT

)3
Gab

30(T )

P
el−ac.ph

12,ab = P
ac.ph

0,ab

(
kBT

)4
{
Gab

31(T ) + Gab
40(T )

}
P

el−ac.ph

22,ab = P
ac.ph

0,ab

(
kBT

)5
{
Gab

32(T ) + 2Gab
41(T ) + Gab

50(T ) + t−1
(
Gab

31(T ) − jcG
ab
30(T )

)} (17)

where

P
ac.ph

0,ab = (
2π/h̄6

)(
V/Ms4

)[(
λabεF

)2
/d2

](
m∗

ab

)2
(18)

and

Gab
km(T ) =

∫ ∞

b(T )

xm

(ex + 1)

∫ umax

0
du

uk((4(x − jc)/t) − u2)−1/2

(eu − 1)(e−(x+u) + 1)
(19)



Thermal conductivity of layered high-Tc materials 2047

with t = kBT /2m∗
abs

2, u = h̄ω/kBT and

umax =
{

2
√

(x − jc)/t if 2
√

(x − jc)/t 6 TD/T

TD/T if 2
√

(x − jc)/t > TD/T

assuming thus the usual Debye cut-off procedure for the phonon spectrum (TD is the Debye
temperature).

Note that an attempt to go beyond this approximation has been discussed in [17].

3.3. Total electronic scattering

According to Matthiessen’s rule [9], which is expected to hold in HTSs, the total scattering
rate of electrons is the sum of the individual electronic scattering rates

P
el,tot
ij = P

el,imp

ij + P
el,ac.ph

ij . (20)

Consequently, the total in-plane electronic thermal conductivityκe,ab is obtained by summing
the electronic scattering probabilities (12) and (17), and inserting these latter expressions
with the trial currents (7) in to the general expression (1).

4. Results and discussion

The normalized superconducting state in-plane electronic thermal conductivityκe,ab(T )/

κe,ab(Tc) due to electron–impurity and electron–phonon scattering is shown in figure 1. Let
us observe thatκe,ab decreases rapidly belowTc when only impurity scattering is considered
whereasκe,ab increases belowTc and reaches a maximum at about 0.6Tc when inelastic
electron–phonon collisions are taken into account; this latter contribution then falls off at
lower temperatures because of the condensation of charge carriers into Cooper pairs.

Figure 1. The temperature dependence of the normalized superconducting state in-plane
electronic thermal conductivityκe,ab(T )/κe,ab(Tc) for electron–impurity (- - - -) and electron–
phonon (——) scattering. The coupling energyJc has been fixed to 10−3 eV.

The total normalized in-plane electronic thermal conductivity, including electron–
phonon and electron–impurity scattering is illustrated in figure 2. We have fixed the value of
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λab to 0.5 [18] andJc to 10−3 eV and calculatedκe,ab for several impurity fractionsN in the
system. One can see thatκe,ab is quasi-constant in the normal state and independent ofN ,
suggesting that the normal state electronic thermal conductivity is mainly due to electron–
phonon scattering. In the superconducting state, the maximum value ofκe,ab decreases and
is shifted towards higher temperature as the impurity fractionN is increased, similarly to
the situation for an isotropic model [19].

Figure 2. The total normalized in-plane electronic thermal conductivityκe,ab(T )/κe,ab(Tc)

against reduced temperatureT/Tc for several impurity fractionsN in the system. The electron–
phonon coupling constantλab and the inter-layer coupling energyJc have been fixed respectively
to 0.5 and 10−3 eV.

Figure 3. Normalized in-plane electronic thermal conductivityκe,ab(T )/κe,ab(Tc) as a function
of the reduced temperatureT/Tc for a fixed value of the electron–phonon coupling constant
λ = 0.5, the impurity fractionN = 0.05 and several values of the inter-layer coupling energy
Jc.

The influence of the interlayer coupling constantJc on the temperature dependence of the
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electronic thermal conductivity is shown in figure 3 for a fixed value of the electron–phonon
coupling constantλab = 0.5 and the impurity fractionN = 0.05. The amplitude of the
maximum is decreased and its position is shifted towards higher temperatures as the coupling
energy is decreased, i.e. when the system becomes more two dimensional. This behaviour
can be interpreted as follows. AsJc is decreased, the area of the cylindrical Fermi surface
is lowered, which results in a decrease of heat carrying electrons. Moreover, the mean free
path of electrons decreases whenJc decreases since electrons are then more ‘constrained’ to
move in the CuO2 planes where they are more strongly scattered by impurities and phonons.
As a result, the maximum ofκe,ab is less pronounced whenJc is decreased.

Consequently, the different behaviour of the thermal conductivity in YBa2Cu3O7−δ and
Bi2Sr2CaCu2O8, namely the less pronounced maximum observed in the latter compounds
[3, 4, 11], could be due to a more layered and anisotropic structure of Bi2Sr2CaCu2O8.

Experimental data on the thermal conductivity of Bi2Sr2CaCu2O8 have been reported
in several publications so far [11, 20–22]. We have chosen to fit the results of Allenet
al [11] as they allowed us to separate the electron and phonon contribution in a subtle
way (see below). In order to reproduce these data, we have fixed the following values of
the physical parameters [23–26]:Tc = 85 K, εF = 0.1 eV, 1(0) = 20 meV, εc = 35,
02D = 30.3 Å−1, m∗

ab = 8m0, wherem0 is the free electron mass,γ = √
m∗

c/m∗
ab ≈ 50,

d = 3 Å, TD = 250 K ands = 3500 m s−1. The corresponding value of the coupling
energyJc calculated from (6) is 4.7 × 10−3 eV.

Figure 4. The temperature dependence of the in-plane thermal conductivity of a superconducting
single crystal of Bi2Sr2CaCu2O8 (• ) and an insulating single crystal of Bi2Sr2YCu2O8 (◦ )
as derived from [11].

The experimental results of Allenet al [11] on the in-plane thermal conductivity
of a superconducting single crystal of Bi2Sr2CaCu2O8 (• ) and an insulating crystal of
Bi2Sr2YCu2O8 (◦ ) are shown in figure 4. Since the phonon spectra of these two materials
are almost the same [27], one can reasonably assume that the phonon contributionκph of
the superconducting sample is nearly identical to the insulating one which monotonically
increases with temperature (see figure 4). Consequently, the electronic contributionκe,ab of
the single crystal of Bi2Sr2CaCu2O8 is obtained from the total contribution by substracting
the phonon background which corresponds to the thermal conductivity of Bi2Sr2YCu2O8

[11].
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The best fit to the electronic thermal conductivity of the single crystal of Bi2Sr2CaCu2O8

so obtained is shown in figure 5. The data are quite well reproduced over the entire range
of temperatures with realistic values of the free parameters:λab = 0.42, N = 0.06 and
Jc = 2 × 10−3 eV.

Figure 5. The in-plane electronic thermal conductivity of a single crystal of Bi2Sr2CaCu2O8

[11] against temperature (• ) and the calculated theoretical fit (——) along the variational
method. See the text for the values of the free parameters.

We have used the data of Clootset al [12] for examining a 2223 compound. It should
be noted that the sample was obtained through a vitreous route which leads to a quite
homogeneous sample. The thermal conductivityκ of this superconducting polycrystal of
Bi2Sr2Ca2Cu3O10 is shown in figure 6. The critical temperature, estimated via electrical
resistivity measurements, is about 110 K [12]. The behaviour of the thermal conductivity,
measured using a steady state and longitudinal heat flow method described in [8], is in
agreement with previous data on polycrystalline systems [18, 28–30]:κ monotonically
decreases with decreasing temperature in the normal state, a slope break occurs atTc and
κ reaches a maximum at about 85 K;κ then falls off at lower temperatures.

Since the substitution of Ca in Bi2Sr2Ca2Cu3O10 by rare earth or yttrium atoms has not
yet been successfully achieved, we have to use another method to separate the electronic
and phonon contribution of the thermal conductivity. First, as in [8], we suppose thatκ can
be separated into an intergrain contributionκgb from grain boundaries and an intragrainκig

contribution due to the flow of electrons and phonons, i.e.κ = κig + κgb.
The intergrain contribution is estimated by using a percolation model [31]. We found

that κgb ≈ 0.4κ, leading toκig ≈ 0.6κ. The electronic contribution is then obtained by
subtracting a phonon background fromκig. This background is obtained by fitting normal
state data which monotonically increase with temperature (figure 6) and taking into account
the value of the normal state electronic thermal conductivityκn

e ≈ 0.15 W mK−1 estimated
via the Wiedemann–Franz law. The temperature dependence of the electronic contribution
to the thermal conductivity of the Bi2Sr2Ca2Cu3O10 polycrystal so derived is shown in
figure 7 with the theoretical curve obtained by using the following physical parameters
[23–26, 32]: Tc = 110 K, εF = 0.1 eV, 1(0) = 20 meV, εc = 35, 02D = 15.15 Å−1,
m∗

ab = 4m0, γ ≈ 30, d = 6.7 Å, TD = 275 K ands = 3500 m s−1. The corresponding
value of the coupling energyJc calculated from (6) is 3.9 × 10−3 eV. The values of the
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Figure 6. The temperature dependence of the thermal conductivity of a polycrystalline sample
of Bi2Sr2Ca2Cu3O10 [12].

Figure 7. The electronic thermal conductivity of the polycrystalline sample of Bi2Sr2Ca2Cu3O10

[12] (♦) and the best fit (——) along the variational method. See the test for the values of the
free parameters.

free parameters obtained from the fit areλab = 0.58, N = 0.41 andJc = 3 × 10−3 eV. As
in the case of Bi-2212, the data are quite well reproduced with realistic values of the free
parameters. Notice that the impurity fraction is rather high (40%), which seems reasonable
as the sample of Bi-2223 is a (granular) polycrystal containing some 2212 phases.

5. Conclusions

In light of the possible electronic origin of the thermal conductivity peak of HTSs, we
have derived the electronic contribution to the thermal conductivity of highly anisotropic
layered materials using a variational method along the lines of a two-fluid model. We have
considered an anisotropic electronic energy spectrum with an interlayer coupling energy
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between the superconducting planes. Taking into account elastic and inelastic electron
scattering by impurities and acoustic phonons, we have obtained theoretical results which
reproduce reasonably well the experimental data of Allenet al [11] on a single crystal of
Bi2Sr2CaCu2O8 and the data of Clootset al [12] on a polycrystal of Bi2Sr2Ca2Cu3O10 with
quite realistic values of the free parameters.
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