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Abstract. We have used the variational approach to calculate the in-plane electronic thermal
conductivity of high?, superconductors along the lines of a two-fluid model. To account for

the layered structure of these compounds, an anisotropic electronic energy spectrum with a
Josephson-like coupling between the superconducting planes within a Lawrence—Doniach model
has been assumed. Both elastic and inelastic electronic scattering processes are considered.
The theoretical results obtained are quantitative agreementvith experimental data on
Bi»Sr,CaCuyOg single crystals and BSrnCaCuzOp polycrystals. These results suggest an
electronic origin of the peak observed in the thermal conductivity of these materials.

1. Introduction

The thermal conductivity still remains a controversial transport property of high-critical-
temperature superconductors (HTSs). Some authors attribute the main structure of this
transport coefficient, the rapid increasexobelow 7, and the peak at lower temperature,

to the lattice contribution, of the thermal conductivity [1-3]. The rapid rise ofin the
superconducting state is then attributed to the increase of phonon mean free path as electrons
condense into Cooper pairs which do not scatter phonons.etYal [4] have however
proposed an alternative interpretation based on a two-fluid model for superconductivity:
as the scattering rate of normal electrons has been observed to decrease rapidly in the
superconducting state of YB@usO;_s [5] and BLSrLCaCuyOg [6], the rapid increase of
below T, could be mainly due to an electronic contribution. A phenomenological description

of this contribution has been suggested [7] and has been applied to describe the behaviour
of k in YBa,Cw,O;_5 ceramics, pure or doped with Fe, and presenting or not an excess of
CuO [8].

In the present paper, the electronic contribution to the thermal conductivity of HTSs is
calculated using the variational method introduced by Kohler and described by Ziman [9].
This approach is quite powerful as it allows one to take into account the dimensionality and
the anisotropy of compounds such as HTSs in a straightforward way. In this approach, the
transport coefficients are tensors expressed in terms of trial currents and scattering matrix
elements. We have calculated the in-plane thermal conductiyify of HTSs, taking
into account the layered structure of these materials using an anisotropic electronic energy
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spectrum, with a Josephson-like coupling between the superconducting planes (as in the
Lawrence—Doniach model [10]). We have considered elastic and inelastic scattering of

electrons by acoustic phonons as well as elastic scattering of electrons by impurities. We
have not taken into account the scattering of electrons by grain boundaries, dislocations and
sheetlike faults in order to limit the number of free parameters in the final expression for

We have also neglected the scattering of electrons by high-frequency optical phonons since
they are not excited in the temperature region of interest, i.e. below 200 K.

In section 2, we present the general tensorial variational expression for the electronic
thermal conductivity of an anisotropic system. The scattering processes of electrons are
discussed in section 3. In section 4, we present and discuss the theoretical results. The model
is tested on the experimental data of Allenal [11] on a single crystal of B6r,CaCyOg
and on the data of Clootst al [12] on a polycrystalline sample of B$rLCaCuzOqp.
Conclusions are finally drawn in section 5.

2. A variational expression for the in-plane electronic thermal conductivity

Layered high. compounds such as the bismuth and thallium families have a tetragonal
lattice for which transport coefficients are diagonal tensors. The tensorial expression for
the electronic thermal conductivity of such systems is given in the variational scheme by
[9,13]
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with —e the electron chargey, (k) the u component of the electron velocity with wave
vectork, E(k) = \/(e(k) —er)2+ A2(k) the quasiparticle energy spectrum with the
Fermi energy and\ the superconducting gap parametgf, the Fermi-Dirac distribution
function andQ}* = (P71, with P/ the elements of the scattering matfixgiven by
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where C(k, k') is the scattering probability corresponding to the different electronic
scattering processes ari (k) the trial functions.

We have considered a BCS s-wave pairing with a temperature dependence of the gap
approximately by [4, 14]

A(T) = A(O) tanh(ar\/(T. — T) /T) 4)

where the constant ~ 2.

In order to take into account the layered structure of HTSs, we have considered an
anisotropic electronic energy spectrum with a Josephson coupling edgefggtween the
superconducting (Cu) planes [10]
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wherem?, is the effective mass of electron in thé plane and/ the distance between the
superconducting planes. The coupling energys given by [10]

Jo =/ deph?/m*d? (6)

with m} the effective mass of electrons along thexis.

We have then performed calculations of the in-plane electronic thermal conductivity
Ke.ap, 1.€. SUPPOSING that the temperature gradient lies along#th@anes as is most usually
the case. To this end, we have used the set of trial funcidtia) = E(k)'~k, limited
toi = 1,2 [9,15]. As a result, the in-plane trial currents defined in (2) read, in the
long-wavelength limit(k,d <« 1, so that co&.d) ~ 1),

JiP = J§" (kg T)Ko(T)

T80 = J¢ (ks T)?Ka(T)

U = U8 (ks T)?K(T) ()

Us® = U8 (ks T) K o(T)
where J§b = (—e)2w?m¥, /dh® and Ug® = J¢*/(—e), and

o yn(x — .

k() = | . s ®

with x = E/kgT, j. = J./kgT, andb(T) = /AZ+ J2/kpT.

3. Electronic scattering mechanisms

The scattering processes restore the equilibrium state of a system which has been submitted
to an external perturbation such as an electric field or a temperature gradient. We consider

here the elastic scattering of electrons by impurities and the inelastic scattering of electrons

by acoustical phonons.

3.1. Electron—impurity scattering

HTSs are non-stoichiometric systems which contain point defects mainly corresponding to
oxygen atom vacancies. In order to take into account the scattering of electrons by these
‘impurities’, we have used the Yukawa potential [9]

V(r) = (ze?/e)e ™ r 9)

where Ze is the effective charge of the impurity, the effective dielectric constant and
I'?? the two dimensional Thomas—Fermi factor which takes into account the screening of
the electronic density near the impurity [16]

120 = 2m*, e?/4nh?eg (10)

wheregg is the electric permittivity in vacuum.
In the Born approximation, the (elastic) electron—impurity scattering probability
corresponding to the Yukawa potential (9) is given by

C(imp)(k’ k:/) _ (167T3/}7)(Ze2/ VEC)ZI:N/Ok — K 2

+(FZD)2>2] FUEL— fUENS(E - E) (11)
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where V is the volume of the crystaly the impurity fraction in the sample, arfe and

k' the wave vectors of the incoming and outgoing electron respectively. Inserting (11) in
(3) and integrating in cylindrical coordinates, we obtain the following expressions for the
in-plane scattering matrix elements for electron—impurity collisions in the long-wavelength
limit:

i = Py (ks T)™ Tt (T (12)
where
Py = 16( n/R*V)[(2m3,) %%/ T2Pd?)(zée.)*N (13)

is a material constant, and

ab *© xk(x —Je)
- dx 14
A /b(T) (14 coshix))(4(x — jo) + y)%2 (14)

with y = (ks T)"[R*(I2P)2/2m,].

3.2. Electron—acoustic phonon scattering

The scattering of electrons with acoustic phonons is described using the deformation
potential approximation [9, 13]

V(q) = —iyh/2Mw raperq (15)

wheregq is the phonon wave vectok,; the in-plane electron—phonon coupling constant,
the phonon frequency/ the mass of the crystal, arg: the Fermi energy. Note that this
approximation is valid in the case of long-wavelength acoustic phonons which are supposed
to limit predominantly heat transport in high-cuprates [1, 3]. We have assumed a linear
in-plane acoustic phonon spectrum, = hsq, with s the sound velocity in the crystal.

In the Born approximation, the scattering probability corresponding to the potential (15)
reads

P (k, k') = (V/87)[(raperq)’ /M, | fOUE)[L — fUEN|NS(E — E' +Fw,)  (16)

whereV is the volume of the crystal and, the Bose—Einstein distribution function. We
suppose here that the phonon system is in equilibrium, i.e. we neglect the phonon drag
contribution.

Inserting expression (16) into (3) and integrating in cylindrical coordinates, we obtain
the in-plane electron—acoustic phonon scattering matrix elements

Piia " = Foy (kaT) GE(T)
Pl = Poct (ke T)*{ G5H(T) + G35(T) (17)
Poray ™" = Py (kaT)*| GH(T) + 2GH(T) + GE(T) +17H(GH(T) - j.GHD)) |
where

R = (2 /) (VM) (haver ) 1?) () 18)

and
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with ¢t = kpT/2m?,s%, u = ho/ksT and
- {2\/<x —Jolt 2@ —=jo/t <Tp/T
max —

Tp/T if 2/ (x — jo)/t > Tp/T
assuming thus the usual Debye cut-off procedure for the phonon spedtpuis the Debye
temperature).

Note that an attempt to go beyond this approximation has been discussed in [17].

3.3. Total electronic scattering

According to Matthiessen’s rule [9], which is expected to hold in HTSs, the total scattering
rate of electrons is the sum of the individual electronic scattering rates
el,to el,im el,ac.ph
Pijl,t T Pij L Pij ph (20)
Consequently, the total in-plane electronic thermal conductiyity is obtained by summing
the electronic scattering probabilities (12) and (17), and inserting these latter expressions
with the trial currents (7) in to the general expression (1).

4. Results and discussion

The normalized superconducting state in-plane electronic thermal conduativigyT)/
ke.ar(T:) due to electron—impurity and electron—phonon scattering is shown in figure 1. Let
us observe that, ,, decreases rapidly belo#. when only impurity scattering is considered
whereask, 4, increases below, and reaches a maximum at abou8X) when inelastic
electron—phonon collisions are taken into account; this latter contribution then falls off at
lower temperatures because of the condensation of charge carriers into Cooper pairs.

Ke,a!:v/Ke,ab(Tc)
T

0.5 -

Figure 1. The temperature dependence of the normalized superconducting state in-plane
electronic thermal conductivity, ., (T)/x..q»(T;) for electron—impurity { - - -) and electron—
phonon (——) scattering. The coupling energiyhas been fixed to 1G eV.

The total normalized in-plane electronic thermal conductivity, including electron—
phonon and electron—impurity scattering is illustrated in figure 2. We have fixed the value of
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Lap 10 0.5 [18] andJ, to 1072 eV and calculated, , for several impurity fractionsV in the
system. One can see that,, is quasi-constant in the normal state and independem, of
suggesting that the normal state electronic thermal conductivity is mainly due to electron—
phonon scattering. In the superconducting state, the maximum vakg,pflecreases and

is shifted towards higher temperature as the impurity fractibis increased, similarly to

the situation for an isotropic model [19].

0 02 04 06 08 1 1.2 1.4
T/7,

Figure 2. The total normalized in-plane electronic thermal conductivity,,(T) /e a»(T;)
against reduced temperatufg 7, for several impurity fractionsV in the system. The electron—
phonon coupling constant,, and the inter-layer coupling energdy have been fixed respectively
to 0.5 and 163 eV.

Figure 3. Normalized in-plane electronic thermal conductivity,,(7')/«..q»(T;) as a function

of the reduced temperatur®/ 7, for a fixed value of the electron—phonon coupling constant
A = 0.5, the impurity fractionNV = 0.05 and several values of the inter-layer coupling energy
Je.

The influence of the interlayer coupling constdnbn the temperature dependence of the
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electronic thermal conductivity is shown in figure 3 for a fixed value of the electron—phonon
coupling constank,, = 0.5 and the impurity fractionV = 0.05. The amplitude of the
maximum is decreased and its position is shifted towards higher temperatures as the coupling
energy is decreased, i.e. when the system becomes more two dimensional. This behaviour
can be interpreted as follows. Ak is decreased, the area of the cylindrical Fermi surface

is lowered, which results in a decrease of heat carrying electrons. Moreover, the mean free
path of electrons decreases wherdecreases since electrons are then more ‘constrained’ to
move in the Cu@ planes where they are more strongly scattered by impurities and phonons.
As a result, the maximum of, ., is less pronounced wheh is decreased.

Consequently, the different behaviour of the thermal conductivity in YBgO;_s and
Bi,SrL,CaCuyOg, namely the less pronounced maximum observed in the latter compounds
[3,4,11], could be due to a more layered and anisotropic structure,8i8iaCuyOg.

Experimental data on the thermal conductivity ob&»,CaCyOg have been reported
in several publications so far [11,20-22]. We have chosen to fit the results of étlen
al [11] as they allowed us to separate the electron and phonon contribution in a subtle
way (see below). In order to reproduce these data, we have fixed the following values of
the physical parameters [23-26]. = 85 K, ¢y = 0.1 eV, A(0) = 20 meV, ¢, = 35,
2P = 303 A~%, m}, = 8mo, wheremy is the free electron masg, = \/m:/m?, ~ 50,

d =3 A, Tp = 250 K ands = 3500 m s'. The corresponding value of the coupling
energyJ. calculated from (6) is # x 1073 eV.

8§ —mr——T T
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o 000
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Figure 4. The temperature dependence of the in-plane thermal conductivity of a superconducting
single crystal of BiSr,CaCyOg (® ) and an insulating single crystal of BrYCuy,Os (O )
as derived from [11].

The experimental results of Alleet al [11] on the in-plane thermal conductivity
of a superconducting single crystal of,Br,CaCyOg (® ) and an insulating crystal of
Bi,SrYCu,0g (0 ) are shown in figure 4. Since the phonon spectra of these two materials
are almost the same [27], one can reasonably assume that the phonon contkpuidn
the superconducting sample is nearly identical to the insulating one which monotonically
increases with temperature (see figure 4). Consequently, the electronic contribytjosf
the single crystal of BiS,CaCuyOg is obtained from the total contribution by substracting
the phonon background which corresponds to the thermal conductivity ,&f,BiCu,Og
[11].
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The best fit to the electronic thermal conductivity of the single crystal gsBCaCuyOg
so obtained is shown in figure 5. The data are quite well reproduced over the entire range
of temperatures with realistic values of the free parametgrs:= 0.42, N = 0.06 and
J.=2x103eV.

Kg op (W/mM K)
w
T

L S S S B R M
20 40 60 80 100 120 140

T (K)

Figure 5. The in-plane electronic thermal conductivity of a single crystal ofSBiCaCyOsg
[11] against temperature®() and the calculated theoretical fit (——) along the variational
method. See the text for the values of the free parameters.

We have used the data of Cloasal [12] for examining a 2223 compound. It should
be noted that the sample was obtained through a vitreous route which leads to a quite
homogeneous sample. The thermal conductivitgf this superconducting polycrystal of
Bi,SrLCaCu0y9 is shown in figure 6. The critical temperature, estimated via electrical
resistivity measurements, is about 110 K [12]. The behaviour of the thermal conductivity,
measured using a steady state and longitudinal heat flow method described in [8], is in
agreement with previous data on polycrystalline systems [18, 28—30inonotonically
decreases with decreasing temperature in the normal state, a slope break o@¢umadat
x reaches a maximum at about 85 Kthen falls off at lower temperatures.

Since the substitution of Ca in Br,CaCuzO19 by rare earth or yttrium atoms has not
yet been successfully achieved, we have to use another method to separate the electronic
and phonon contribution of the thermal conductivity. First, as in [8], we suppose ttet
be separated into an intergrain contributigp from grain boundaries and an intragraig
contribution due to the flow of electrons and phonons,«.es «;, + Kgp.

The intergrain contribution is estimated by using a percolation model [31]. We found
that ko, ~ 0.4«, leading tok;, ~ 0.6x. The electronic contribution is then obtained by
subtracting a phonon background from. This background is obtained by fitting normal
state data which monotonically increase with temperature (figure 6) and taking into account
the value of the normal state electronic thermal conductity~ 0.15 W mK~! estimated
via the Wiedemann—Franz law. The temperature dependence of the electronic contribution
to the thermal conductivity of the BsrnCaCu;O1 polycrystal so derived is shown in
figure 7 with the theoretical curve obtained by using the following physical parameters
[23-26,32]: 7. = 110 K, e = 0.1 eV, A(0) = 20 meV, e, = 35, 2 = 1515 A%,
m¥, = 4mo, y ~ 30,d = 6.7 A, Tp = 275 K ands = 3500 m s!. The corresponding
value of the coupling energy, calculated from (6) is ® x 10~2 eV. The values of the
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Figure 6. The temperature dependence of the thermal conductivity of a polycrystalline sample
of Bi;SrnCaCugOip [12].

0.3
X 0.2
£
~
Z
xw

0.1

Figure 7. The electronic thermal conductivity of the polycrystalline sample gBBICaCuzO10
[12] (¢) and the best fit (——) along the variational method. See the test for the values of the

free parameters.

free parameters obtained from the fit arg = 0.58, N = 0.41 andJ. = 3 x 103 eV. As
in the case of Bi-2212, the data are quite well reproduced with realistic values of the free
parameters. Notice that the impurity fraction is rather high (40%), which seems reasonable
as the sample of Bi-2223 is a (granular) polycrystal containing some 2212 phases.

5. Conclusions

In light of the possible electronic origin of the thermal conductivity peak of HTSs, we
have derived the electronic contribution to the thermal conductivity of highly anisotropic
layered materials using a variational method along the lines of a two-fluid model. We have
considered an anisotropic electronic energy spectrum with an interlayer coupling energy
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between the superconducting planes. Taking into account elastic and inelastic electron
scattering by impurities and acoustic phonons, we have obtained theoretical results which
reproduce reasonably well the experimental data of Alieal [11] on a single crystal of
Bi,Sr,CaCuyOg and the data of Clootst al [12] on a polycrystal of BiSrL,CaCu;O; with

quite realistic values of the free parameters.
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